Table 4: Gag | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | | |---------------|---|--------------------------|---|---------------------------|--|--| | | p24 antibody titre | IV+ people with a p24-V | HIV-1 infection, Vaccine <i>inponent:</i> p24, p17 VLP virus-like particle did not significant dest, short-lived increased proliferative | | [Kelleher1998]
hocyte count, viral load, or | | | | p24() HIV-1 infection, Vaccine human() [Maino2000] e: Vector/type: protein, gp120 depleted virus HZ321 (REMUNETM) Strain: Z321 HIV component: p24, gp120 depleted virus 18 HIV-1-seropositive patients with a low frequency or no detectable CD4+ T-cell response to HIV-1 antigen received an immunogen consisting of 10 units of native p24 and 100 ug of HZ321, a gp120 depleted antigen Using flow-cytometric methods, HIV-1 specific CD4+ T-cells were shown to increase in response to immunization – in many pasignificant enhancement was observed after a single immunization The frequency of CD4+ T-cells expressing cytokines in response to antigen by FACS was correlated with a lymphoproliferation | | | | | | | | p24() HIV-1 infection human() [Ruiz2000] • Structured treatment interruption in chronically infected patients allowed recovery of p24 Th proliferative responses after HAART therapy discontinuation in 2/12 patients • The Th response to p24 was identified during peak viremia in one patient, while in the second it was noted when viremia was controlled after restarting antiviral therapy | | | | | | | | p24() HIV-1 infection human() [Lori1999] Ten patients with acute, pre-seroconversion HIV-1 infections were treated with didanosine, indinavir and hydroxyurea – this treatment is associated with normalization of immune parameters A vigorous HIV-specific Th response (stimulation index greater than 8) was observed in 7/8 patients treated before complete WB seroconversion, but in only 1/5 controls treated after seroconversion Vigorous Th responses were detected as early as 34 days after treatment begin Patients treated prior to seroconversion had no loss of naive CD4 T lymphocytes, recovery of up to 35% of the naive CD8 cells in several weeks, and a reduced latent viral reservoir | | | | | | | | The magnitude of t
the responseIn contrast, the ma | he Th1 response correlat | HIV-1 infection ong CD4+ T-cell IFN-γ producing Th1 ed with previous interruptions in HAAl L response did not correlate with inter in HAART | RT, suggesting the interr | | | ## **HIV Helper-T Cell Epitopes** | Gag() | • | Gag() Patients from later stages o | f infection given HA | HIV-1 infection
ART do not show restoration | human() on of HIV-1 specific Th proliferati | [Plana1998]
ve responses | | |--------------|--|--|---|---|---|---|--| | Gag() | • | Gag()
Env and gag Th epitopes w
increase in CD4+ lymphoc | - | - | human()
ponses after IL-2 therapy – while
oliferative responses | [Kelleher1998a] IL-2 therapy causes an | | | Gag() | | Gag() | | Vaccine | Macaca nemestrina(|) [Kent1998a] | | | | Vaccine: | Vector/type: DNA prime w | ith vaccinia boost | Strain: LAI HIV con | nponent: Env, Gag | | | | | Priming with an HIV-DNA vaccine and boosting with a vaccinia construct induced greater levels of HIV T-cell immunity than either vaccine alone The proliferative response to Env and Gag after the DNA vaccination had a mean SI of 1.5-4, but after boosting with rHIV-fowlpox virus, there was a 6-17 fold increase in the mean SI for HIV Gag and Env – The Th response happened despite a fall in Ab titers, suggesting that the Th response was primarily Th1, not Th2. The CTL response was also enhanced | | | | | | | | | | | | | 701 | [Haanay 1000b] | | | Gag() | | () | | Vaccine | Rhesus macaque() | [Heeney1999b] | | | Gag() | | Vector/type: DNA, protein, Ten different vaccine strate | egies were evaluated | SCOM | Rhesus macaque() from infection in a rhesus macaque | • | | | Gag() | • | Vector/type: DNA, protein,
Ten different vaccine strate
pathogenic SHIV challenge
Protection correlated with t
DNA, protein+adjuvant, VI | egies were evaluated
the magnitude of NA
LP and ISCOM vaccighest NAb titers, Th | SCOM for their ability to protect b responses, β -chemokines ines were tested 11 and Th2 responses, was to | • '' | que model using a non- | | | | • | Vector/type: DNA, protein,
Ten different vaccine strate
pathogenic SHIV challenge
Protection correlated with t
DNA, protein+adjuvant, VI
HIV-1/ISCOMS gave the h | egies were evaluated
the magnitude of NA
LP and ISCOM vaccighest NAb titers, Th | SCOM for their ability to protect b responses, β -chemokines ines were tested 11 and Th2 responses, was to | from infection in a rhesus macaca, and a balanced Th response | que model using a non- | | | | • | Vector/type: DNA, protein, Ten different vaccine strate pathogenic SHIV challenge Protection correlated with the DNA, protein+adjuvant, VIHIV-1/ISCOMS gave the horesponse, and gave enhanced Gag/Pol() | egies were evaluated by the magnitude of NA LP and ISCOM vaccighest NAb titers, The d β -chemokine produces | SCOM for their ability to protect b responses, β -chemokines ines were tested al and Th2 responses, was the function | from infection in a rhesus macaca, and a balanced Th response the only vaccine formulation tested chimpanzee() | que model using a non- d with a detectable CTL [Kim1998d] | | | | • • • • • Vaccine: | Vector/type: DNA, protein, Ten different vaccine strate pathogenic SHIV challenge Protection correlated with t DNA, protein+adjuvant, VI HIV-1/ISCOMS gave the h response, and gave enhance Gag/Pol() Vector/type: DNA Str expression vectors Co-stimulatory molecules | egies were evaluated to the magnitude of NA LP and ISCOM vaccighest NAb titers, The dβ-chemokine producin: MN HIV of the co-expressed with a | SCOM for their ability to protect b responses, β-chemokines ines were tested and Th2 responses, was teluction Vaccine component: Gag, Pol, Env | from infection in a rhesus macaca, and a balanced Th response the only vaccine formulation tested chimpanzee() | que model using a non- d with a detectable CTL [Kim1998d] and CD86 the immune response – | | | Gag() | • • • • • Vaccine: | Vector/type: DNA, protein, Ten different vaccine strate pathogenic SHIV challenge Protection correlated with t DNA, protein+adjuvant, VI HIV-1/ISCOMS gave the h response, and gave enhance Gag/Pol() Vector/type: DNA Str expression vectors Co-stimulatory molecules | egies were evaluated to the magnitude of NA LP and ISCOM vaccighest NAb titers, The dβ-chemokine producin: MN HIV of the co-expressed with a | SCOM for their ability to protect b responses, β-chemokines ines were tested and Th2 responses, was teluction Vaccine component: Gag, Pol, Env | from infection in a rhesus macada, and a balanced Th response the only vaccine formulation tested chimpanzee() Stimulatory Agents: CD80 DNA vaccine used to enhance to | que model using a non- d with a detectable CTL [Kim1998d] and CD86 the immune response — proliferative responses | | | Gag() | Vaccine: | Vector/type: DNA, protein, Ten different vaccine strate pathogenic SHIV challenge Protection correlated with t DNA, protein+adjuvant, VI HIV-1/ISCOMS gave the h response, and gave enhance Gag/Pol() Vector/type: DNA Str expression vectors Co-stimulatory molecules co-expression of CD86, but | egies were evaluated to the magnitude of NA LP and ISCOM vaccighest NAb titers, The dβ-chemokine producin: MN HIV of the co-expressed with a | SCOM for their ability to protect b responses, β-chemokines ines were tested al and Th2 responses, was teluction Vaccine component: Gag, Pol, Em an HIV-1 immunogen in a ally increased both HIV Em | from infection in a rhesus macaca, and a balanced Th response the only vaccine formulation tested chimpanzee() Stimulatory Agents: CD80 DNA vaccine used to enhance to and Gag/Pol specific CTL and The | que model using a non- d with a detectable CTL [Kim1998d] and CD86 the immune response — proliferative responses | | | Gag() Gag() | Vaccine: | Vector/type: DNA, protein, Ten different vaccine strate pathogenic SHIV challenge Protection correlated with to DNA, protein+adjuvant, VI HIV-1/ISCOMS gave the h response, and gave enhance Gag/Pol() Vector/type: DNA Str expression vectors Co-stimulatory molecules co-expression of CD86, but Gag/Pol() Vector/type: canarypox | egies were evaluated en the magnitude of NA LP and ISCOM vaccighest NAb titers, The ed β-chemokine production. MN HIV of the co-expressed with a senot CD80, dramatic Strain: MN, LAI x vector expressing the expression of exp | SCOM for their ability to protect b responses, β-chemokines ines were tested al and Th2 responses, was teluction Vaccine component: Gag, Pol, Env un HIV-1 immunogen in a ally increased both HIV Env Vaccine Vaccine HIV component: gp120 | from infection in a rhesus macaca, and a balanced Th response the only vaccine formulation tested chimpanzee() Stimulatory Agents: CD80 DNA vaccine used to enhance to and Gag/Pol specific CTL and The | que model using a non- d with a detectable CTL [Kim1998d] and CD86 the immune response — a proliferative responses [Salmon-Ceron1999a] | | | Gag() | p24() | HIV-1 infection | human() | [Carcelain2001] | | | |-------|--|---|------------------------------|------------------------------|--|--| | | Repeated structured HAART therapy inter
HIV-1 specific CD4+ Th1 responses cond
by CD8-depleted PBMC Kinetics suggest that viral replication lead HIV-specific CD8+ T-cell responses were | currently with viral rebound, as measureds to rapid destruction of the HIV-spec | ured by proliferation assays | | | | | Gag() | Gag() HIV-1 infection human() [Blankson2001a] 5/10 chronically HIV infected patients with low CD4+ counts who received HAART therapy experienced immune reconstitution and displayed p24, p17 and p66 T-helper CD4 proliferative responses, in contrast to 0/8 chronically HIV infected patients with his CD4+ counts at the initiation of antiretroviral treatment This surprising result could be due to the low CD4 nadir patients being more likely to have thymic regeneration or a peripher expansion of T-cells | | | | | | | Gag() | p24() Prolonged viral suppression resulting from in many HIV+ patients At baseline, 2/41 (4.9%) subjects had a prof therapy, 53% had a detectable response | roliferative response to Gag p24, and | | | | | | Gag() | p24() Prolonged viral suppression resulting fro or gp160, but Th proliferative responses t patients had stronger and more frequent T | to influenza, alloantigen, and PHA die | d develop in many HIV+ pa | | | | | Gag() | Gag() HIV-1 infection human() [Altfeld2001b] Therapy provided during acute infection resulted in a narrower CTL response, stronger T-helper response, and a less diverse viral population than was seen in individuals treated during chronic infection The breadth and specificity of the CTL response was determined using Elispot by studying 19 individuals with pre-seroconversion therapy (Group 1), 11 individuals with primary infection but post-seroconversion therapy (Group 2), and 10 individuals who responded to HAART given during chronic infection (Group 3), using 259 overlapping peptides spanning p17, p24, RT, gp41, gp120 and Nef Individuals who were given HAART during acute or early in infection had significantly stronger proliferative responses than individuals who were chronically infected | | | | | | | Gag() | p24() • Patients who started therapy at acute HIV strong HIV-specific CD4 proliferative respatients that had delayed initiation of HA | ponses and were able to maintain a C | ΓL response even with unde | etectable viral load - three | | | III-A-15 DEC 2001 ## **HIV Helper-T Cell Epitopes** • In 3/4 responders tested p24 gave the strongest T-helper response Gag() [Moss2001] p24() Vaccine rat() *Vaccine:* Vector/type: gp120 depleted whole killed virus Strain: HZ321 (subtype A env, subtype G gag) HIV component: whole virus Stimulatory Agents: CpG, Freund's adjuvant • Lewis rats simultaneously immunized with HIV-1 antigen and with immunostimulatory sequences CpG had increased Th proliferative responses, but when CpG was given as a prime prior to the injection of HIV-1 antigen it was not as effective Gag() [Moss2000] p24() Vaccine rat() Strain: HZ321 (subtype A env, subtype G gag) HIV component: *Vaccine:* Vector/type: gp120 depleted whole killed virus whole virus Stimulatory Agents: CpG, Freund's adjuvant • Lewis rats co-immunized with HIV-1 antigen in Freund's and with immunostimulatory sequences CpG stimulated increased IFN γ expressing CD4+ and CD8+ T-cells and anti-p24 antibodies relative to antigen in Freund's without CpG Gag() p24() in vitro stimulation human(A*0201) [Engelmayer2001] • Recombinant canarypox virus vector containing HIV-1 sequences, upon infection of mature dendritic cells, can trigger specific lysis in vitro by T-cells from HIV-1 infected individuals at levels comparable to the response seen to HIV carried in vaccinia vectors • Recombinant canarypox virus vector containing HIV-1 sequences can also stimulate HIV-specific IFNγ CD4+ helper T-cell responses to Gag from bulk or purified CD4+ T-cells Gag() Vaccine p24() $murine(H-2^d)$ [Qiu2000a] Vaccine: Vector/type: DNA HIV component: Gag • Mice were injected with plasmid DNA at 0, 2 and 4 weeks and lymphocyte proliferation was measured after 6 weeks with recombinant p24 protein • Secreted HIV-1 Gag expression vectors generated a stronger response than standard Gag or cytoplasmic Gag expression vectors • IFN- γ levels were increased compared to an undetectable IL-4 response • CTL levels were also increased in secreted Gag expression vaccination studies $murine(H-2^d)$ Gag() Gag() Vaccine [BillautMulot2001] Vaccine: Vector/type: DNA with DNA boost, DNA with recombinant protein boost Strain: LAI HIV component: Gag, Tat, Nef Stimulatory Agents: IL-18 • DNA vaccinated BALB/c mice primed and boosted with a multiepitopic vaccine with IL-18 showed lymphoproliferative responses 7 weeks post immunization • Strong but non-lasting HIV-specific CTL responses were detected by a Cr-release assay and DNA prime + DNA boost was more effective than DNA prime + protein boost • Immunization with either the multiepitopic DNA or with the mixed DNA vaccine resulted in Th1 cytokines production (IL-2 and IFN γ) in spleen cell cultures stimulated by Tat and Gag, while Th2 cytokines IL-4 and IL-10 production was not detectable • Co-administration of IL-18 increased T-cell responses but decreased anti-HIV antibody levels [Halim2000] Vaccine: Vector/type: coxsackievirus HIV component: partial p24, polyepitope • An avirulent rec coxsackievirus (CB4-P) construct was generated that can express p24 Gag sequences – CB4-P is attenuated even in immunodeficient mice and T-helper responses can be elicited from peptides embedded in a surface loop of the VP1 capsid • This paper describes the vaccine strategy and generation of constructs, and employs amino-terminal fusion of Gag sequences to the viral polyprotein with subsequent cleavage to elicit CTL responses via MHC class I presentation in BALB/c mice Gag() murine(H- 2^d , H- 2^b) Gag() none Vaccine [Mata2001] *Vaccine: Vector/type: Listeria monocytogenes* Strain: HXB2 HIV component: Gag • BALB/c and C57BL/6 mice were immunized with rec Listeria monocytogenes (Lm-Gag) expressing HIV-1 HXB2 Gag and mice were challenged with vaccinia expressing Gag • L. monocytogenes is a gram-positive bacteria that enters the macrophage on phagocytosis and lives in the cytoplasm – secreted L. monocytogenes antigens are processed and presented by both class I and class II pathways • CD4+ Th1 T-cells mediated the Gag specific immunological protection in mice immunized with Lm-Gag and challenged with vaccinia-Gag • Gag-specific CTL may enhance viral clearance via IFN γ secretion, but are not essential for immunity murine(H- 2^d , H- 2^b) Gag() [Mata2000] Gag() Vaccine none Vaccine $murine(H-2^d)$ Vaccine: Vector/type: Listeria monocytogenes HIV component: Gag Gag() p24() - BALB/c and C57BL/6 mice were immunized with rec *Listeria monocytogenes* (Lm-Gag) expressing HIV-1 HXB2 Gag and mice were challenged with vaccinia expressing Gag - *L. monocytogenes* is a gram-positive bacteria that enters the macrophage on phagocytosis and lives in the cytoplasm secreted *L. monocytogenes* antigens are processed and presented by both class I and class II pathways - This article is a review of *L. monocytogenes* biology and its potential as a vaccine vector for HIV, comparing to other vector systems, and discussing CD4+ Th1 T-cells mediated Gag specific immunological protection in mice and the Gag CTL response